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Formal solution of a class of reaction-diffusion models: Reduction to a single-particle problem
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We consider the trapping reactioh+B—B in space dimensioml<2. By formally eliminating theB
particles from the problem, we derive an effective dynamics for Ahparticles from which the survival
probability of a giverA particle and the statistics of its spatial fluctuations can be calculated in a rather general
way. The method can be extended to the study of annihilation and coalescence re&cti®s,0 or B, in
d=2.
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First-passage problems involving more than a few degree@_ﬂ[g])_ Finally, Q(t) is obtained by averaging eXJp(u[Z])

of freedom are notorl_ously difficult to solvil,2]. In this oyer all possibleA-particle trajectoriei(r) with the appro-
paper, we use a technique that enables one to solve a class ©f

first-passage problems involving an infinite number of dePriate (Wieney measure, _e>{|&_(1/4D,)f5dT(dZ/d_T)2]’
grees of freedom. For definiteness, we develop the method if{hereD’ is the A particle’s diffusion constant. In this way,
the context of the “trapping reactionA+B—B, but the theB particles hav_e been gl|m|nated from the problem, and
applications are more general, as emphasized in the latt@ne has an effectivé-particle dynamuis described by the
part of the paper. The main result of our approach is to reWiener measure and the functionalz]. The final step
duce the problem to one described by a single degree ofthich makes further analytical progress possible, is the ob-
freedom whose late-time behavior can be extracted analytiservation that the path integral o\[g(rr) is dominated at late
cally. times by a singleA-particle trajectory.

The asymptotic dynamics of the trapping reaction has The main results of this approach are the following.
been a long-standing problem. The main question is how the (i) The trajectory where thé\ particle is stationary is
density ofA particles decreases with time. A related problem,proved to be the dominant trajectory and determines the
much studied in the context of chemical kinetjés4] is the  asymptotic form of theA particle’s survival probabilityf4],
two-species annihilation reactiolA+B—0, with initial  Q(t)~exp(-\t¥?) for d<2 (with a logarithmic correction
densitiespa(0)<pg(0). This is equivalent to the trapping in d=2), where\4 is a calculable constafi§] andd is the
reaction at late times whepn(t) <pg(t) andpg(t) is essen-  dimensionality of space.
tially constant. Again, the standard problem is to compute the (ji) Typical fluctuationsof the survivingA-particle trajec-
asymptotic form of theA-particle densitypa(t) or, equiva-  tories around this dominant path have varian@(t))
lently, the probabilityQ(t) that a givenA particle survives 24 for d<2, where¢=(2—d)/4.
until time t. Since the particles do not interact with other  (jii) Exact results are obtained f6(t) and the form of
particles of the same species, to compQi@) it suffices to  the dominant path in a system with a nonuniform initial den-
consider asingle Aparticle moving in an infinite sea @  sity of B particles.
particles with density (=pg). (iv) This approach provides a powerful method for calcu-

Since theA particle dies on the first contact with B |ating the first-passage properties for a deterministically
particle, a natural approach to this type of first-passage pro%oving boundar;E(t).

lem would be to treat thA particle as an absorbing boundary
for the B particles(or vice versa Unfortunately, for an ar-
bitrary A-particle trajectory, the absorbing-boundary problem
cannot be solved. In this paper, we introduce a different a
proach in which we treat th& andB patrticles as if they were
noninteracting We exploit the initial condition that eadh
particle is randomly located anywhere in the system to shovk,
that certain “events,” where 8 particle meets thé particle

for Fhe f'rSt_ time(remember that we are treating them asdomly distributed within it, and a singl& particle (diffusion
noninteracting, so they can meet more than gnbave a

Poisson distribution, i.e., the probability, that n such constantD’), initially located at the origin. LeE(t) be the

events have occurred up to time is given by p, A-particle trajectory, and |€E’(>Z,t) be the probability that a
=(u"/nM)exp(—w), where the meam of the distribution is  given B particle, starting ak, has met theA particle before

a functionalu[z] of the trajectoryz(7), O<r<t of the A  timet. The average of this quantity over the initial position
particle. The probability that the trajectoff{r) has survived, is (1NV)f,dV P(x,t)=R(t)/V, where R(t) is an implicit
in the original interacting problem, is simplgo[z]=exp  functional ofz(t). The probability thah distinct B particles

(v) The method also provides a formalism for calculating
Q(t) in the highly nontrivial situation where th particles
themselves interact, e.g3+B—0, at least ind=2 where
Pihe density correlations induced by these reactions are neg-

ligible.

We begin by deriving the Poisson property that plays a
ntral role in the analysis. We consider a finite voluvhe
containingN=pV B particles (diffusion constantD), ran-
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have met theA particle, averaged over their initial positions, sin(7d/2) [t dt,

is pa(t)=(N(RV)"(1-R/V)N". Taking the limit N malz]= =i

—o, V—oo, with p=N/V andn held fixed, one recovers the & o(t—ty)

Poisson distributionp,= (u"/n!)exp(—w), with u=pR. o dt
One can derive an equation for the functionglz] by xf l—Z,L'L(tz)K(tl,tz), 4
calculating, in two ways, the probability density to findBa 0 (t;—ty)9?
particle at the poinE(t) at timet. First, since the particles - -
are treated as noninteracting, and Barticles start in a WhereK(ty,t;) = 1—exp{—[2(ts) —Zt,) 14D (11— t,)}.
steady-state configuration of uniform density this prob- Equation(4) is “implicit” because the full . appears on
ability density is justp. Second, from the Poisson property, the right-hand side. Now note th#i(t;,t;)=0 and =0
the probability that &B particle (i.e., anyB particle meets [becauseu(t) is the mean number of differef® particles
the A particle for the first time in the time intervat’(t’ that have met thé\ particle up to timet — clearly a nonde-
+dt’) is w(t')dt’. The probability density for such a par- creasing functioh Therefore,u,[z]=0 for all pathsz(t),
ticle to subsequently arrive a(t) at timet is given by the  with equality whenz(t)=0 for all t. It follows that Q(t)
diffusion propagator  G(z(t),t|z(t'),t")=[4=D(t fE<%((F;()_MO_%I'»EjEX‘FtIh_tﬁO(t')dl Tthis lrigorous quer bg“”dd
)] 2 exp{—[Z(t)—Zt') 24D (t—t')}. Equating the re- or ( , combined wi e identical rigorous lower boun
sults from tr?c{ase two methods gives}our fundamental equaqer'ved in[S], proves that the asymptotic form Q‘(t) IS the
tion same as for the target problem, where feparticle is sta-
tionary, for alld<2. The interpretation of this result is that,
since u is large fort—o (u~t%?), the path integral for
t o, - -, Q(t) is dominated by the path that minimizgs i.e., we are
P:fodt p(t)G(z(b), tz(t"),t"), (1) essentially evaluating the path integral by the method of
steepest descents. Small fluctuations around the dominant
path will determine the corrections to the asymptotic form.
which is an implicit equation for the functional[z] [noting We next discuss the probability distributiét(z,t) of the
that u(t=0)=0, since ndB particle can meet tha particle positionz of the A particle at timet, given that it survives.

: : . _ 2 _ Numerical studieg8] suggest that id=1, (z2(t))*?~t,
in zero timd. Finally, Q(t) =(exp(-u[z])),, where the aver- o' 6 550 3" hile similar studies id=2 are incon-

age is over all pathg(t) weighted with the Wiener measure. .| sive. Our methods suggest that=(2—d)/4 for all d
As the first application of this equation we prove that the

trajectoryz=0 is the dominant path, i.e., that it gives the
smallest possible value @t[Z] for all t. This functionuq(t)
satisfies Eq(1) with z=0:

<2. The technique is to expaneh[z], given by Eq.(4), to

orderz? to compute the variance of the Gaussian fluctuations

around the dominant trajecto(t)=0. To this order, one

can replace u(t,) on the right-hand side byug(ty)

=2\qt¥2, and expand the functioki(t,,t,) to orderz2. Spe-
t cializing tod=1, the result is, at timé

p:J dt’ ot )[4mD(t—t")] "2 (2)

i Mo[rod fu [zt - 2t) P

t
zZ]= dt .
walz] 877Dfo Vi—t,Jo 2 ot —t,)3?

The probability distribution for at timet is given, up to
' an overall normalization, by the path integral

&)
By inspection,uq(t) must have the formuq(t) =\4t%? (for
d<2) in order that the right-hand side be independent of
Substituting this form in Eqg(2), and evaluating the integral
gives

, (6)

1 (e .
P(z,t)= f Dz(t)exp( - Hfodrzz(r)—,ul[z]

2\ [md a2
Ng=p ﬁ Sin 7 (47D)%,  d<2, 3
where the integral is over all paths satisfying the boundary
, i conditionsz(0)=0, z(t)=z.
while for d=2 one finds fort—ce, uo(t)—4mpDt/Int [6] The path integral has the forfiDz(t)exp(—gz]), where
The corresponding A-particle survival probability @y(t) the actionS[z]=S;[x]+S,[Z] is a quadratic functional of
=exgd —uo(t)]. This simple case of a statid particle is 2(7), whereST[z]=(1/4D’)fE,dr'zz(r) and S,[2]= uy[2].

sometimes called the “target annihilation problem,” and our_: . y )
method reproduces the known results for that prodl@hin _Smce th? integrand is Gaussian, mdaependenqe .Of the pat_h
integral is exactly captured by the path of minimum action

a very simple way. To prove thai(t)=0 gives the global connectingz(0)=0 and z(t)=z. Although we have been

minimum of ulz], we write u= po+ p1 in Eq. (1). This  unable to find this path analytically, we can obtain a lower
equation can then be rearranged, with the help of Laplacgound on(z*(t)) by noting that§[z] for any trial function
transform techniques, to give an implicit equation fof z]: z(t) provides an upper bound on the minimum action. The

060102-2



RAPID COMMUNICATIONS

FORMAL SOLUTION OF A CLASS OF REACTION-. .. PHSICAL REVIEW E 67, 060102ZR) (2003

linear path z(7)=(7/t)z gives Sy=cy\;z%/D\t and S; 1.2 - . - .
=c12z°/D't, wherec, andct are unimportant constants. For
this path, thereforeS, dominates at largé The probability
weight for the fluctuationg(t) of surviving trajectories is
Gaussian, with variancezz(t))z(DIZCV)\l)\/f for larget, —
i.e., (Z2(t))~t?¢, with ¢=1/4, consistent with the numeri- 0.8 | 1
cal estimate =0.25-0.3. A more detailed study9]
strongly suggests that the lower bouge= 1/4 is saturated, g(t) 1 SEE—
i.e., ¢=1/4. Similar argument$9] give the generalization
¢=(2—d)/4 for d<2. i ]
We turn now to a related problem with a nontrivial domi- 0.4 g —
nant path that can be exactly determined. Consider in I ]
=1, a system where the density Bfparticles att=0 has

different values,p; and pg, to the left and right of theA 0 fo s i

particle. The derivation of an equation f@fz] proceeds 0 A 1

exactly as before, except that the probability density to finda 0 : : = : :

B particle at the poinz at timet in the noninteracting system, -5 0 In(p Dt) S 10
which appears on the left-hand side of Ed), has to be

recalculated. In terms of the diffusion propaga€rintro- FIG. 1. Time-dependence af(t)=—In Q(t)/\;\t for density

duced earlier, this probability isquite generally Pg(z,t) asymmetriesA = 1/3, 3/5, and 7/9top to bottom. The horizontal
=[7_.dxp(x) G(z,t|x,0) wherep(x) is the initial B-particle  lines show the asymptotic value gfin each case, while the inset
density at positiorx. When p(x)=p, a constant, one finds Shows this value as a function af

Pg(z,t)=p, as before. Whep(x) =p,_ for x<0 andpg for
x>0, the generalized version of E(L) becomes

1- Aerf( 2V )

In the main part of Fig. 1, numerical results fg(t) =
—In Q(t)/\;+\t, obtained using the algorithm of RéB], are
‘ displayed, withD=1/2 andp, =0.5 in all cases, whileg
:J' dt’ u(t’) G(z(t),t]z(t"),t"), =0.25, 0.125, and 0.062%op to bottom on the right cor-

0 responding toA=1/3, 3/5, and 7/9 respectively. The hori-
zontal lines on the right show the asymptotic values obtained
from the inset for the corresponding values/of The slow
approach to asymptopia is similar to that obserf@d0] in
the symmetric caseA=0).

As a bonus, the same calculation solves the first-passage
%’roblem ofB particles with density, for x<<0 andpg for

P 4Dt

where p=(p_+tpr)/2 is now the mean densityl=(p,
—pr)/(p.+pRr) is a measure of the left-right asymmetry,
and erf() is the error function.

Physical intuition suggests that, because of the asymm

try, surviving A-particle trajectories will tend to be those that x>0 moving in the presence of a deterministically moving

drift into the region(the right, say where theB-particle den- . O == o
sity is initially smaller. Upper and lower bounds have beenf”‘bsorbmg boundary located xft) = ay4Dt. The probabil

derived earlief10] for the asymptotics of thA-particle sur- ![E/ tha}t n? p?rncle Tai reacEedAt k;\e \%oundf[\rr]y uzto llrlmas

vival probability Q(t), which show that it has the asymptotic e simple formQ(t) =exg —g(A)Avt], with g(A) given

form Q(t)~exg —g(A)A,\i], where g(0)=1 for consis- by Eg. (8). We are not aware of any other way of obtaining

tency with the symmetrilc césm_—p This form for Q(t) this result. Extensions to deterministically moving absorbing
=pR.

. . boundaries in dimensiod>1 are also possiblE9].
shows that u[z] for the optimal path has the time- . . .
dependences=t. Both sides of Eq(7) can then be ren- In the final part of this paper, we apply this approach to a

T : nontrivial problem withd=2. Consider the annihilation or
dered time independent by the choiler) =ay4Dr for all  ;oaescence reactioB+B—0 with probability 1/g—1)

T§t, Wherec_r is a constant to be de_termined. A more de'and B+B— B with probability (q—2)/(q—1). The density
':ﬁ:lse}jomélys@g] shows that the dominant path is indeed of ¢ g pfldr/tzicles is known to decgy a;s(t)_=ad[(q—l)/q]
) . X(Dt) for d<2, whereay is a universal constant

Putting u.(t) =g(A)1\t andz(r) = a 4D, in Eq. (7), [11,17 equal to 1/2re for d—2, withe=2—d. Ford=2, a
and evaluating the integral on the right-hand side gives  |o4arithmic correction is obtaineg(t) ~In t/t. Now assume
2 that one of theB patrticles is tagged and relabeled as/Aan
_ exp(— a’) [1-Aerf(a)] @8 particle, with diffusion constanb’. We consider the prob-

1-erf(a) ' ability (the “walker persistence” probability13]) Q(t) that

the A particle has not met anB particle up to timet. The

The final step is to minimize the right-hand side with respectimit d— 2 provides a simplification because it is the border-
to « to obtain the optimal path. This can be done numeridine dimension above which the rate equation approach,
cally. The resultingg(A) is shown forA=0 as the inset in  dp/dtx—p2, which givesp(t)= 1/, is qualitatively correct
Fig. 1 [note that, by symmetryg(A) is symmetric around because density fluctuations can be ignddsd12. Equation
A=0]. It clearly satisfies the bounds-JA|<g(A)<1 de- (1) is readily adapted to this case. As before, we treat’the
rived in[10]. particle as if it does not interact with thH# particles, while

9(4)
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the interactions of th® particles with each other give rise to —o. The resultd=(g—1)/q in d=2 agrees with that ob-
their decreasing density(t). The Poisson distribution for tained by Cardy12] using field-theoretic methods.

the number of first crossings of theparticle byB particles If one now considers the cas®’ >0, i.e., a diffusingA
still holds for this system. The left-hand side of Ef), i.e., ~ particle, one sees immediately that of =D andq=2 (so
the probability density to find B particle at the poinz(t) at ~ thatB+B—0 always, theA particle is equivalent to another

timet, becomes(t), while on the right-hand side the propa- B partictl_e,l ar;]dQ(t)=tp(t)t, the detr;]sity, Sirt‘f:? evl-elry SU:ViV'
gator G(Z(t),t|z(t'),t') has to be multiplied by a factor "9 Parficie has not Met any ofher partcie. enc{)

) . o . . =p(t)~Int/t for D’=D andq=2. This suggests that, for
p(t)/p(t"), being the probability of a giveB particle sur- , . _a . -
viving till time t, given that it survives till timet’. The generalb’, Q(t) will decay ast™", where is a nontrivial

> 9 function of D'/D.
required generalization of E¢1) then reads The calculation ofé can readily be extended #©'>0

T within the present formalism, using a power-series expansion
1:f —,,u(t’)G(Z(t),t|£(t’),t’). 9) in D'/D. The method is to use a cumulant expansion
o p(t") to write Q(t)=(exp(—u)),=exp(—{w),+{(u?),~(u)}/2!
+---). To first order inD’, one needs only the first cumu-
lant. The result is#=(1+D'/D)(q—1)/g. This class of
problems, whereQ(t) decays as a power law instead of a
gven ot nspacaie locaon of ek pari has ot 0 ST ke e Sorene wiee e b
been V'S't?d by any particle. Th? Statioh particle corre- (and small fluctuations about),tgiving a leading large-
sponds_t%(r)zo for all 7, and withp(t')=a4[(d—1)/a]  form independent oD’, but has to be evaluated exactly,
X(Dt") =% for larget, Eq. (9) becomes with results that depend db’ even fort—oc. Full details of

¢ this calculation, together with results to higher order in

(47T)d/2ad(q_1)/q:f dt’p(t’)t’d’z(t—t’)‘dlz (10 D’'/D, will be presented elsewhere.

0 In conclusion, we have applied an analytic approach to a
class of reaction-diffusion models, which reduces them to
one-patrticle systems. We hope to use this method in future to
addressinter alia, the problem of the very slow approach to
asymptopia in the trapping reaction.

It is convenient to approach the limit—2 from below.
Consider first the casB’ =0, for which Q(t) becomes the
“site-persistence” probability, i.e., the probability that a

for larget. In order that the right-hand side be time indepen-
dent for larget, x(t) must have the asymptotic form(t)

~ #Int. Inserting this form into Eq(10), and evaluating the
integral givesd=297Y2"1sin(we/2)ay(q—1)/q. Taking the
limit e—0, using ag=1/2me in this limit, gives 6=(q R.A.B. acknowledges the EPSRC for financial support
—1)/q for d=2. Finally, Q(t)=exd—u(t)]~t"? for t under Grant No. GR/R53197.
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